

Introduction

- When a sufficient training data is available, DNNbased approaches get outstanding performance.
- LLE is a manifold learning method for super resolution, which attempts to discover the intrinsic geometry of the high-dimensional data and then embed them onto low-dimensional embedding space.
- We have successfully applied LLE to speaker voice conversion, but employed LLE to directly convert noisy speech to clean speech could not get satisfactory performance
- We noted that LLE-based postfiltering could be combined with DAS to further remove the residual noise components, and thus improve the SNR and speech quality.

Experimental Results

- DAS system:
- Proposed system:

 - Dictionary: 40 utterances with SNR -10, 0, 10 dB car/two-talker noise

	DAS w/ LLE			DAS		
	PESQ	STOI	SSNR	PESQ	STOI	SSNR
SNR10	2.22	0.83	12.73	2.21	0.88	12.48
SNR6	2.11	0.82	12.08	2.05	0.86	11.76
SNR2	1.97	0.80	10.88	1.93	0.84	10.47
SNRO	1.86	0.79	10.12	1.83	0.83	9.66
SNR-2	1.78	0.78	9.03	1.75	0.81	8.46
SNR-6	1.59	0.75	6.13	1.61	0.78	5.38
SNR-10	1.42	0.69	2.53	1.47	0.72	1.51
Ave	1.85	0.78	9.07	1.83	0.82	8.53

Objective evaluation of two-talker noise

SNR10 SNR6 SNR2 **SNRO** SNR-2 SNR-6 SNR-10 Ave

- Structure: 7 hidden layers with 1200, 300, 300, 514, 300, 300, 1200 hidden nodes - Training data: 250 utterances are mixed with -10~20 dB (5dB interval) car/two-talker noise

- Five-fold cross validation with 50 utterances from the testing set of MHINT - Testing data: 10 utterances with SNR -10, -6, -2, 0, 2, 6, 10 dB car/ two talk noise

Objective evaluation of car noise										
	DAS w/ LLE			DAS						
0	PESQ	STOI	PESQ	STOI	PESQ	STOI				
	2.03	0.80	15.73	1.96	0.85	15.04				
	1.99	0.79	14.91	1.93	0.84	14.17				
	1.92	0.78	13.37	1.89	0.83	12.40				
	1.86	0.78	12.34	1.85	0.82	11.40				
	1.82	0.77	11.05	1.81	0.81	10.00				
	1.71	0.75	7.74	1.75	0.79	6.34				
	1.60	0.72	3.90	1.67	0.76	2.22				
	1.85	0.77	11.29	1.84	0.81	10.23				

We investigate the use of the LLE algorithm with the paired SE-processed and clean dictionaries for postfiltering SE task.

Experiment results shows that DAS w/ LLE system gets better subjective preference, and objective PESQ and SSNR than baseline DAS system.

