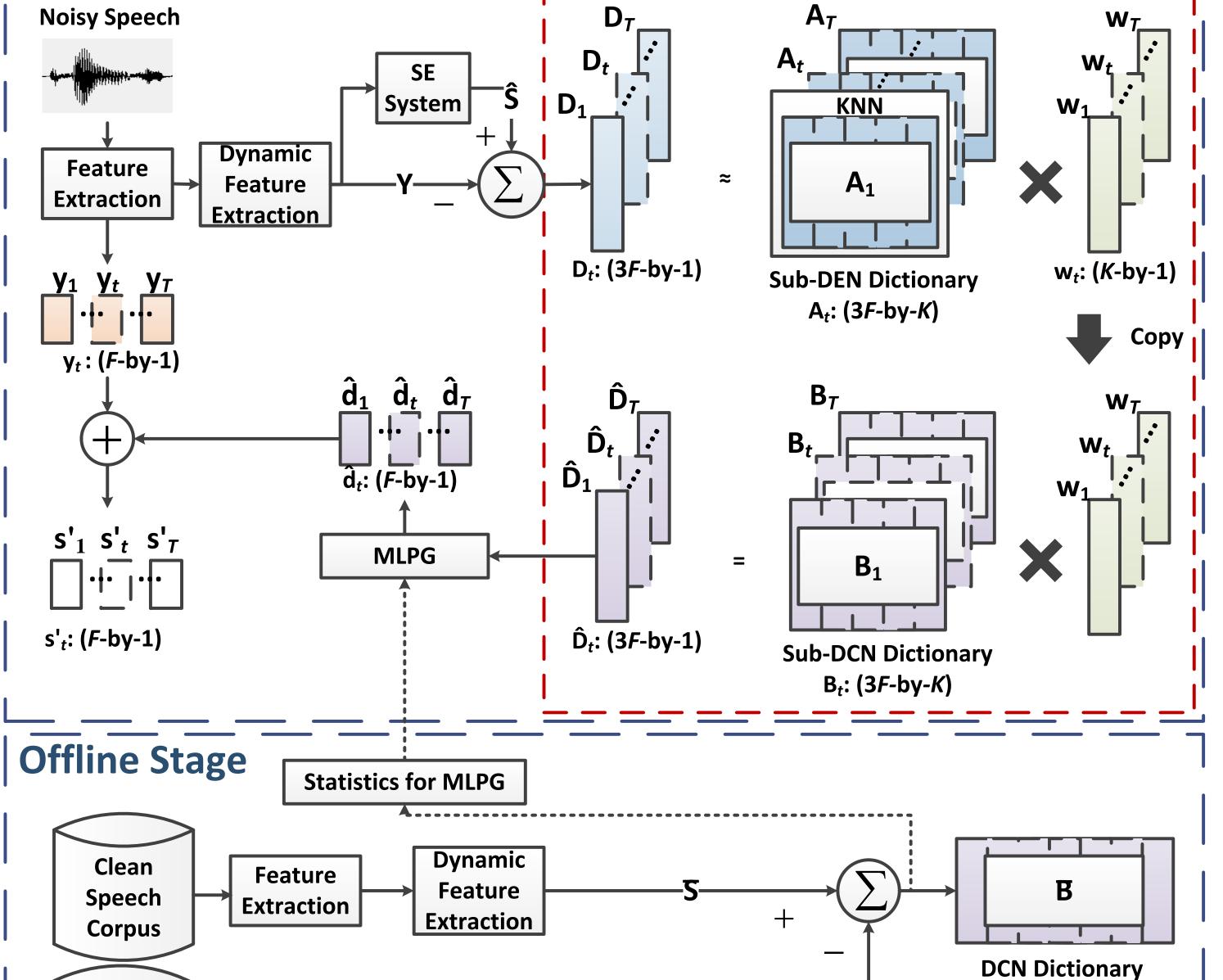


A POST-FILTERING APPROACH BASED ON LOCALLY LINEAR EMBEDDING **DIFFERENCE COMPENSATION FOR SPEECH ENHANCEMENT**

Yi-Chiao Wu, Hsin-Te Hwang, Syu-Siang Wang, Chin-Cheng Hsu, Yu Tsao, and Hsin-Min Wang Academia Sinica, Taiwan

Previous work



- Voice conversion : given source speech, letting machine generate target speech according to the relationship between source and target training speech
 - Exemplar-based voice conversion : using matrix factorization and source-target paired dictionary (formed by speech features) to convert speech
 - (ICASSP2017) Directly using Locally Linear Embedding exemplar-based voice conversion to convert enhanced (distorted) speech to clean speech : post-filtering to compensate the distortion caused by speech enhancement

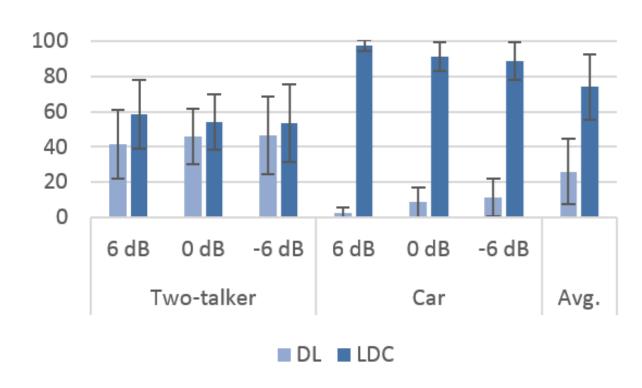
Problem

- Without utilizing the information of noisy speech
- Many to one or one to many issue
 - distorted speech frames from different SNRs are mapped to the same clean speech frame
 - different clean speech frames are mapped to the similar distorted speech frames

Proposed Me			ead of speech sed speech; noisy speech} to the difference of {clean	
System Frame	ework	Experiments		
	LLE Algorithm	 Corpus: Mandarin hearing in noise test (MHINT) 300 utterances of a single speaker 		
STEP 1: Find Neighbors	STEP 2: Linear Reconstruction	STEP 3: Map to Embedded Coordinates	 250 for training and 50 for testing Deep de-noising auto encoder (DDAE) system: Structure: 7 hidden layers with 1200, 300, 300, 514, 300, 300, 1200 hidden nodes Training data: 250 utterances mixed with 10~20 dB (5dB interval) car/two-talker noises Proposed (LDC) and directly conversion (DL) system Five-fold cross validation with 50 test utterances Dictionary: 40 enhanced/clean utterances with SNR -10, 0, 10 dB car/two-talker noises 	
LLE Difference Compensation			- Testing data: 10 utterances with SNR -10, -6, -2, 0,	
Online Stage	LLE-based Di	fference Estimation	6, 10 dB car/two-talker noises	

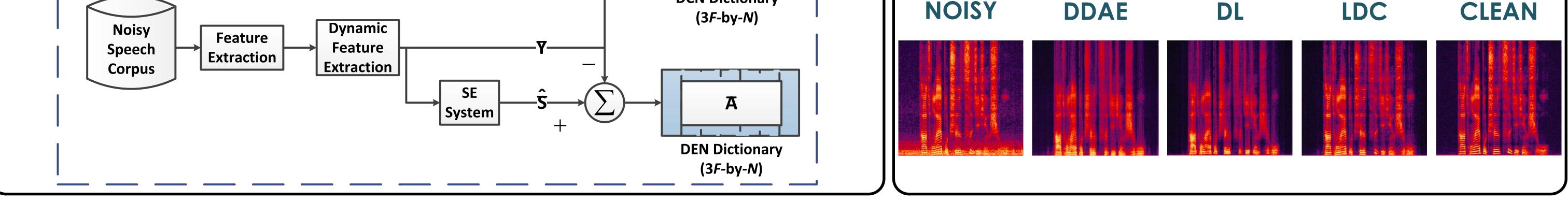
Objective PESQ Score

Objective SSNRI Score


			PESQ			
Noise	Two-talker			Car		
Method	DDAE	DL	LDC	DDAE	DL	LDC
SNR10	2.21	2.22	2.74	1.96	2.03	3.10
SNR6	2.05	2.11	2.44	1.93	1.99	2.88
SNR2	1.93	1.97	2.22	1.89	1.92	2.59
SNR0	1.83	1.86	2.08	1.85	1.86	2.43
SNR-2	1.75	1.78	1.95	1.81	1.82	2.28
SNR-6	1.61	1.59	1.74	1.75	1.71	2.02
SNR-10	1.47	1.42	1.56	1.67	1.60	1.82
Ave	1.83	1.85	2.10	1.84	1.85	2.44

SSNRI Two-talker Car Metho DDAE DDAE LDC SNR10 2.48 5.73 2.73 3.99 5.04 7.59 SNR6 5.76 7.04 8.17 8.91 10.59 SNR2 8.47 9.51 10.40 11.37 12.63 12.34 **SNR0** 9.66 10.57 11.40 13.40 10.12 SNR-2 10.46 13.05 12.00 13.85 11.29 11.03 SNR-6 13.74 11.38 12.34 13.97 11.39 12.13 11.51 **SNR-10** 11.12 12.22 13.90 13.45 12.53 8.53 10.23 11.29 9.27 12.21 9.07

Objective STOI Score


STOI									
Noise	Two-talker			Car					
Method	DDAE	DL	LDC	DDAE	DL	LDC			
SNR10	0.88	0.83	0.90	0.85	0.80	0.90			
SNR6	0.86	0.82	0.88	0.84	0.79	0.88			
SNR2	0.84	0.80	0.86	0.83	0.78	0.86			
SNR0	0.83	0.79	0.84	0.82	0.78	0.85			
SNR-2	0.81	0.78	0.82	0.81	0.77	0.83			
SNR-6	0.78	0.75	0.78	0.79	0.75	0.80			
SNR-10	0.72	0.69	0.73	0.76	0.72	0.75			
Ave	0.82	0.78	0.83	0.81	0.77	0.84			

Subjective XAB Score

Spectrogram Results

NOISY

Conclusions

- Converting the difference between the SE-processed and noisy speech to the difference between the clean and noisy speech, and then compensating the noisy speech with the predicted difference, rather than directly converting the SE-processed speech to the clean speech
- Experimental results demonstrate that the proposed framework performs well in both objective and subjective evaluations