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WaveNet
Motivation
• Modeling the periodic part of speech with prior  F0 knowledge (long-term)

• Modeling the non-periodic part of speech with nearest samples (short-term)

Pitch-dependent dilated convolution (PDCNN)
• Number of samples in a receptive field is determined by the network size

• Effective receptive field can be changed by different dilation size

• Dilation size is dynamically changed according to the pitch

• Pitch-dependent dilated factor: Et = Fs / (F0,t × a)

Voice conversion • VC: convert the speaker identity of speech while maintaining the same linguistic content

• Vocoder (analysis): encode speech into spectral and prosodic features

• Vocoder (synthesis): decode acoustic features to speech waveform

• Neural-Vocoder: replace the synthesizer of a conventional vocoder by an Neural-based 

   speech generative model (ex: WaveNet, SampleRNN)

• Input of Neural-Vocoder: acoustic features

• Output of Neural-Vocoder: speech waveform

• Auto-regressive causal model

• Directly model the probability

• Conditioned on acoustic features h

• Receptive field: previous samples yn-r

• Dilated convolution (DCNN) layers 

   efficiently extend the receptive field

Proposed QPNet

• Combined with DNN-based VC, QPNet vocoder 

    achieves comparable speaker similarity and

    speech quality to WaveNet vocoder with only 

    half the network size

• Corpus for VC

- SPOKE task of Voice Conversion Challenge 2018

- 4 source speakers and 4 target speakers

- 81 training utterances of each speaker

- 35 testing utterances of each source speaker

• Corpus for Neural-Vocoder

- Multi-speaker (SI) models: training data of “bdl” 

      and “slt” from CMU-ARCTIC (1132 utts *2) and all 

      training data of VCC2018 (81 utts *12)

- Speaker-adapted (SD) models: 81 utts for each 

      target speaker adaptation

• Objective evaluation

- MCD for spectral prediction accuracy

- RMSE of log F0 for pitch prediction accuracy

Experimental Evaluations

Conclusions

• Subjective evaluation

- MOS for speech quality (1:bad ~ 5:excellent)
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• Conditioned on the DNN-converted 

   mcep, l inearly transformed F0, and 

   source ap to generate target speech

•Inefficient speech modeling

   - huge network for long receptive field

     to cover all related samples 

   - speech is a quasi-periodic signal è  

     the receptive field includes lots of 

     redundant samples

•lack pitch-controllability

  - diff icult to generate speech with 

     accurate pitch while conditioned on 

     the unseen F0-mcep  pair or F0  not 

     observed in the training data 

Source Target

Cascaded autoregressive networks
• Fixed modules (w/ DCNN) for short-term correlations

• Adaptive modules (w/ PDCNN) for long-term correlations

Speaker adaptation
• SDo: only update the output layers of the networks

• SDa: update the whole networks
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